
Lecture 12: Tree-Based Algorithms
Applied Machine Learning
Volodymyr Kuleshov
Cornell Tech

Part 1: Decision Trees
We are now going to see a different way of defining machine models called decision trees.

Review: Components of A Supervised Machine
Learning Problem
At a high level, a supervised machine learning problem has the following structure:

+ → Predictive ModelTraining Dataset  
Attributes + Features

Learning Algorithm  
Model Class + Objective + Optimizer

The UCI Diabetes Dataset
To explain what is a decision tree, we are going to use the UCI diabetes dataset that we
have been working with earlier.

Let's start by loading this dataset.

In [4]: import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
from sklearn import datasets

Load the diabetes dataset
diabetes = datasets.load_diabetes(as_frame=True)
print(diabetes.DESCR)

.. _diabetes_dataset:

Diabetes dataset

Ten baseline variables, age, sex, body mass index, average blood
pressure, and six blood serum measurements were obtained for each of n =
442 diabetes patients, as well as the response of interest, a
quantitative measure of disease progression one year after baseline.

Data Set Characteristics:

 :Number of Instances: 442

 :Number of Attributes: First 10 columns are numeric predictive values

 :Target: Column 11 is a quantitative measure of disease progression one ye
ar after baseline

 :Attribute Information:
 - age age in years
 - sex
 - bmi body mass index
 - bp average blood pressure
 - s1 tc, T-Cells (a type of white blood cells)
 - s2 ldl, low-density lipoproteins
 - s3 hdl, high-density lipoproteins

 - s3 hdl, high-density lipoproteins
 - s4 tch, thyroid stimulating hormone
 - s5 ltg, lamotrigine
 - s6 glu, blood sugar level

Note: Each of these 10 feature variables have been mean centered and scaled
by the standard deviation times `n_samples` (i.e. the sum of squares of each
column totals 1).

Source URL:
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

For more information see:
Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "L
east Angle Regression," Annals of Statistics (with discussion), 407-499.
(https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)

We can also look at the data directly.

In [2]: # Load the diabetes dataset
diabetes_X, diabetes_y = diabetes.data, diabetes.target

create a binary risk feature
diabetes_y_risk = diabetes_y.copy()
diabetes_y_risk[:] = 0
diabetes_y_risk[diabetes_y > 150] = 1

Print part of the dataset
diabetes_X.head()

Out[2]: age sex bmi bp s1 s2 s3 s4 s5 s6

0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019908 -0.017646

1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068330 -0.092204

2 0.085299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356 -0.002592 0.002864 -0.025930

3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022692 -0.009362

4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031991 -0.046641

Decision Trees: Intuition
Decision tress are machine learning models that mimic how a human would approach this
problem.

1. We start by picking a feature (e.g., age)
2. Then we branch on the feature based on its value (e.g, age > 65?)
3. We select and branch on one or more features (e.g., is it a man?)
4. Then we return an output that depends on all the features we've seen (e.g., a man

over 65)

Decision Trees: Example
Let's first see an example on the diabetes dataset.

We will train a decision tree using it's implementation in sklearn .

In [3]: from matplotlib import pyplot as plt
from sklearn.tree import DecisionTreeClassifier, plot_tree

create and fit the model
clf = DecisionTreeClassifier(max_depth=2)
clf.fit(diabetes_X.iloc[:,:4], diabetes_y_risk)

visualize the model
plot_tree(clf, feature_names=diabetes_X.columns[:4], impurity=False)
print('')

Decision Rules
Let's now define a decision tree a bit more formally. The first important concept is that of a
rule.

A decision rule is a partition of the feature space into two
disjoint regions, e.g.:

Normally, a rule applies to only one feature or attribute of .

If is continuous, the rule normally separates inputs into disjoint intervals

.

! :  → {true, false}

!(") = { true
false

if ≤ 0.009"bmi
if > 0.009"bmi

"# "
"# "#

−∞, $], ($, ∞)

Decision Regions
The next important concept is that of a decision region.

A decision region is a subset of the feature space defined by the application
of a set of rules and their values , i.e.:

For example, a decision region in the diabetes problem is:

% ⊆ 
, , … ,!1 !2 !& , , … , ∈ {true, false}'1 '2 '&

% = {" ∈  ∣ (") = and … and (") = }!1 '1 !& '&

% = {" ∈  ∣ ≤ 0.009 and > 0.004}"bmi "bp

Decision Trees: Definition
A decision tree is a model of the form

The is an indicator function (one if is true, else zero) and values
are the outputs for that region.
The set is a collection of decision regions. They are obtained by recursive binary
splitting.
The rules defining the regions can be organized into a tree, with one rule per
internal node and regions being the leaves.

(:  → 
((") = ({" ∈ %}.∑

%∈

)%

({⋅} {⋅} ∈ )%





In [4]: plot_tree(clf, feature_names=diabetes_X.columns[:4], impurity=False)
print('')

We can also illustrate decision trees via this figure from Hastie et al.

The illustrations are as follows:

Top left: regions that cannot be represented by a tree
Top right: regions that can be represented by a tree
Bottom left: tree generating the top right regions
Bottom right: function values assigned to the regions

Pros and Cons of Decision Trees
Decision trees are important models in machine learning

They are highly interpretable.
Require little data preparation (no rescaling, handle continuous and discrete
features).

Their main disadvantages are that:

If they stay small and interpretable, they are not as powerful.
If they are large, they easily overfit and are hard to regularize.

Part 2: Learning Decision Trees
We saw how decision trees are represented. How do we now learn them from data?

Recall: Decision Trees
A decision tree is a model of the form

The is an indicator function (one if is true, else zero) and values
are the outputs for that region.
The set is a collection of decision regions. They are obtained by recursive binary
splitting.
The rules defining the regions can be organized into a tree, with one rule per
internal node and regions being the leaves.

(:  → 
((") = ({" ∈ %}.∑

%∈

)%

({⋅} {⋅} ∈ )%





In [5]: plot_tree(clf, feature_names=diabetes_X.columns[:4], impurity=False)
print('')

We can also illustrate decision trees via this figure from Hastie et al.

Learning Decision Trees
At a high level, decision trees are grown by adding nodes one at a time.

Most often, we build the tree until it reaches a maximum number of nodes. The crux of the
algorithm is in split_region .

def build_tree(tree, data):
 whlie tree.is_complete() is False:
 region, region_data = tree.get_region()
 new_rule = split_region(region_data)
 tree.add_rule(region, new_rule)

Learning New Decision Rules
How does the split_region function choose new rule ? Given a dataset

, we greedily choose the rule that achieves the dataset
split with the lowest possible loss.

!
 = {(, ∣ * = 1, 2, … , +}"(*))(*)

This can be written as the following optimization problem:

where is a loss function over a subset of the data flagged by the rule and is the set of
possible rules.

+)min
!∈

⎛

⎝

⎜⎜⎜,({(",)) ∈  ∣ !(") = T})  
left subtree

,({(",)) ∈  ∣ !(") = F}  
right subtree

⎞

⎠

⎟⎟⎟

, 

What is the set of possible rules? When has continuous features, the rules have the
following form:

for a feature index and threshold .

"

!(") = { true
false

if ≤ -"#
if > -"#

- ∈ ℝ

When has categorial features, rules may have the following form:

for a feature index and possible value for .

"
!(") = { true

false
if ="# -.
if ≠"# -.

-. "#

Objectives for Trees: Regression
What loss functions might we want to use? In regression, it is common to minimize the L2
error between the data and the single best prediction we can make on this data:

If this was a leaf node, we would predict , the average in the data. The

above loss measures the resulting squared error.

,() = .∑
(",))∈

() − ,-./,0.-1())2

,-./,0.-1())

This results in the following optimization problem for selecting a decision rule:

where and

 are the average

predictions on each part of the data split.

+min
!∈ ∑

(",))∈ ∣ !(")=true
() − (!))/true

2 ∑
(",))∈ ∣ !(")=false

() − (!))/false
2

(!) = ,-./,0.-1({(",)) ∣ (",)) ∈  and !(") = true})/true
(!) = ,-./,0.-1({(",)) ∣ (",)) ∈  and !(") = false})/false

Objectives for Trees: Classification
In classification, we may similarly use the misclassification rate

If this was a leaf node, we would predict , the most common class

in the data. The above loss measures the resulting misclassification error.

,() = ({) = 2345-632237-1()} .∑
(",))∈

2345-632237-1())

Other losses that can be used include the entropy or the gini index. These all optimize for a
split in which different classes do not mix.

Other Practical Considerations
A few additional comments on the above training procedure;

Nodes are added to until tree reaches a maximum depth or the leaves can't be split
anymore.
In practice trees are also often pruned in order to reduce overfitting.
There exist alternative algorithms, including ID3, C4.5, C5.0. See Hastie et al. for
details.

Algorithm: Classification and Regression Trees (CART)
Type: Supervised learning (regression and classification).
Model family: Decision trees.
Objective function: Squared error, mislcassification error, Gini index, etc.
Optimizer: Greedy addition of rules, followed by pruning.

Part 3: Bagging
Next, we are going to see a general technique to improve the performance of machine
learning algorithms.

We will then apply it to decision trees to define an improved algorithm.

Review: Overfitting
Overfitting is one of the most common failure modes of machine learning.

A very expressive model (a high degree polynomial) fits the training dataset
perfectly.
The model also makes wildly incorrect prediction outside this dataset, and doesn't
generalize.

Recall this example, in which we take random samples around a true function.

In [5]: from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

def true_fn(X):
 return np.cos(1.5 * np.pi * X)

np.random.seed(2)
n_samples = 40
X = np.sort(np.random.rand(n_samples))
y = true_fn(X) + np.random.randn(n_samples) * 0.1

X_test = np.linspace(0, 1, 100)
plt.plot(X_test, true_fn(X_test), label="True function")
plt.scatter(X, y, edgecolor='b', s=20, label="Samples")

Out[5]: <matplotlib.collections.PathCollection at 0x12c905b00>

Fitting High-Degree Polynomials
Let's see what happens if we fit a high degree polynomial to random samples of 20 points
from this dataset.

In [9]: n_plots, X_line = 3, np.linspace(0,1,20)
plt.figure(figsize=(14, 5))
for i in range(n_plots):
 ax = plt.subplot(1, n_plots, i + 1)
 random_idx = np.random.randint(0, 30, size=(30,))

 X_random, y_random = X[random_idx], y[random_idx]

 polynomial_features = PolynomialFeatures(degree=6, include_bias=False)
 linear_regression = LinearRegression()
 pipeline = Pipeline([("pf", polynomial_features), ("lr", linear_regression)]
)
 pipeline.fit(X_random[:, np.newaxis], y_random)

 ax.plot(X_line, true_fn(X_line), label="True function")
 ax.plot(X_line, pipeline.predict(X_line[:, np.newaxis]), label="Model")
 ax.scatter(X_random, y_random, edgecolor='b', s=20, label="Samples", alpha=0
.2)
 ax.set_xlim((0, 1))
 ax.set_ylim((-2, 2))
 ax.legend(loc="best")
 ax.set_title('Random sample %d' % i)

High-Variance Models
Each small subset of the data that we train on results is a very different model.

An algorithm that has a tendency to overfit is also called high-variance, because it outputs a
predictive model that varies a lot if we slightly perturb the dataset.

Bagging: Bootstrap Aggregation
The idea of bagging is to reduce model variance by averaging many models trained on
random subsets of the data.

The data samples are taken with replacement and known as bootstrap samples.

for i in range(n_models):
 # collect data samples and fit models
 X_i, y_i = sample_with_replacement(X, y, n_samples)
 model = Model().fit(X_i, y_i)
 ensemble.append(model)

output average prediction at test time:
y_test = ensemble.average_prediction(x_test)

Bagged Polynomial Regression
Let's apply bagging to our polynomial regression problem.

We are going to train a large number of polynomial regressions on random subsets of the
dataset of points that we created earlier.

We start by training an ensemble of bagged models.

In [8]: n_models, n_subset = 10000, 30
ensemble, Xs, ys = [], [], []
for i in range(n_models):
 # take a random subset of the data
 random_idx = np.random.randint(0, 30, size=(n_subset,))
 X_random, y_random = X[random_idx], y[random_idx]

 # train a polynomial regression model
 polynomial_features = PolynomialFeatures(degree=6, include_bias=False)
 linear_regression = LinearRegression()
 pipeline = Pipeline([("pf", polynomial_features), ("lr", linear_regression)]
)
 pipeline.fit(X_random[:, np.newaxis], y_random)

 # add it to our set of bagged models
 ensemble += [pipeline]
 Xs += [X_random]
 ys += [y_random]

Let's visualize the prediction of the bagged model on each random dataset sample and
compare to predictions from an un-bagged models.

In [9]: n_plots, X_line = 3, np.linspace(0,1,25)

In [9]: n_plots, X_line = 3, np.linspace(0,1,25)
plt.figure(figsize=(14, 5))
for i in range(n_plots):
 ax = plt.subplot(1, n_plots, i + 1)

 # generate average predictions
 y_lines = np.zeros((25, n_models))
 for j, model in enumerate(ensemble):
 y_lines[:, j] = model.predict(X_line[:, np.newaxis])
 y_line = y_lines.mean(axis=1)

 # visualize them
 ax.plot(X_line, true_fn(X_line), label="True function")
 ax.plot(X_line, y_lines[:,i], label="Model Trained on Samples")
 ax.plot(X_line, y_line, label="Bagged Model")
 ax.scatter(Xs[i], ys[i], edgecolor='b', s=20, label="Samples", alpha=0.2)
 ax.set_xlim((0, 1))
 ax.set_ylim((-2, 2))
 ax.legend(loc="best")
 ax.set_title('Random sample %d' % i)

Extensions of Bagging
There exist a few closely related techniques to bagging.

Pasting is when samples are taken without replacement.
Random features are when we randomly sample the features.
Random patching is when we do both of the above.

Summary: Bagging
Bagging is a general technique that can be used with high-variance ML algorithms.

It averages predictions from multiple models trained on random subset of the data.

Part 4: Random Forests
Next, let's see how bagging can be applied to decision trees. This will also provide us with a
new algorithm.

Review: Bagging
The idea of bagging is to reduce model variance by averaging many models trained on
random subsets of the data.

The data samples are taken with replacement and known as bootstrap samples.

for i in range(n_models):
 # collect data samples and fit models
 X_i, y_i = sample_with_replacement(X, y, n_samples)
 model = Model().fit(X_i, y_i)
 ensemble.append(model)

output average prediction at test time:
y_test = ensemble.average_prediction(y_test)

Review: Decision Trees
A decision tree is a model of the form

The is an indicator function (one if is true, else zero) and values
are the outputs for that region.
The set is a collection of decision regions. They are obtained by recursive binary
splitting.
The rules defining the regions can be organized into a tree, with one rule per
internal node and regions being the leaves.

(:  → 
((") = ({" ∈ %}.∑

%∈

)%

({⋅} {⋅} ∈ )%





We can also illustrate decision trees via this figure from Hastie et al.

Classification Dataset: Iris Flowers
Let's now look at the performance of decision trees on a new dataset, Iris flowers.

It's a classical dataset originally published by
 in 1936. Nowadays, it's widely used for

demonstrating machine learning algorithms.

R. A. Fisher
(https://en.wikipedia.org/wiki/Ronald_Fisher)

In [10]: import numpy as np
import pandas as pd
from sklearn import datasets

Load the Iris dataset
iris = datasets.load_iris(as_frame=True)

print(iris.DESCR)

https://en.wikipedia.org/wiki/Ronald_Fisher

.. _iris_dataset:

Iris plants dataset

Data Set Characteristics:

 :Number of Instances: 150 (50 in each of three classes)
 :Number of Attributes: 4 numeric, predictive attributes and the class
 :Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

 :Summary Statistics:

 ============== ==== ==== ======= ===== ====================
 Min Max Mean SD Class Correlation
 ============== ==== ==== ======= ===== ====================
 sepal length: 4.3 7.9 5.84 0.83 0.7826
 sepal width: 2.0 4.4 3.05 0.43 -0.4194
 petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
 petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
 ============== ==== ==== ======= ===== ====================

 :Missing Attribute Values: None
 :Class Distribution: 33.3% for each of 3 classes.
 :Creator: R.A. Fisher
 :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
 :Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is take
n

from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field an
d
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to
a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. topic:: References

 - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
 Mathematical Statistics" (John Wiley, NY, 1950).
 - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analys
is.
 (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
 - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
 Structure and Classification Rule for Recognition in Partially Exposed
 Environments". IEEE Transactions on Pattern Analysis and Machine
 Intelligence, Vol. PAMI-2, No. 1, 67-71.
 - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transacti
ons
 on Information Theory, May 1972, 431-433.
 - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II

In [11]: # print part of the dataset
iris_X, iris_y = iris.data, iris.target
pd.concat([iris_X, iris_y], axis=1).head()

Out[11]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

In [12]: # Plot also the training points
p1 = plt.scatter(iris_X.iloc[:, 0], iris_X.iloc[:, 1], c=iris_y, s=50, cmap=plt.
cm.Paired)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Versicolour', 'Vi
rginica', 'Query'], loc='lower right')

Out[12]: <matplotlib.legend.Legend at 0x12d881978>

Decision Trees on the Flower Dataset
Let's now consider what happens when we train a decision tree on the Iris flower dataset.

The code below will be used to visualize predictions from decision trees on this dataset.

In []: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.ht
ml
from sklearn.tree import DecisionTreeClassifier
from matplotlib.colors import ListedColormap

import warnings
warnings.filterwarnings("ignore")

def make_grid(X):
 # Plot the decision boundary. For that, we will assign a color to each
 # point in the mesh [x_min, x_max]x[y_min, y_max].
 x_min, x_max = X.iloc[:, 0].min() - 0.1, X.iloc[:, 0].max() + 0.1
 y_min, y_max = X.iloc[:, 1].min() - 0.1, X.iloc[:, 1].max() + 0.1
 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
 np.arange(y_min, y_max, 0.02))
 return xx, yy, x_min, x_max, y_min, y_max

def make_2d_preds(clf, X):
 xx, yy, x_min, x_max, y_min, y_max = make_grid(X)
 Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 return Z

def make_2d_plot(ax, Z, X, y):
 # Create color maps
 cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
 cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

 xx, yy, x_min, x_max, y_min, y_max = make_grid(X)

 # Put the result into a color plot
 ax.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

 # Plot also the training points
 ax.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y, cmap=plt.cm.Paired, edgecolor='k
', s=50)
 ax.set_xlabel('Sepal Length')
 ax.set_ylabel('Sepal Width')
 ax.set_xlim(xx.min(), xx.max())
 ax.set_ylim(yy.min(), yy.max())

We may now train and visualize a decision tree on this dataset.

In [41]: # Train a Decision Tree Model
ax = plt.gca()
X = iris_X.iloc[:,:2]
clf = DecisionTreeClassifier()
clf.fit(X, iris_y)
Z = make_2d_preds(clf, X)
make_2d_plot(ax, Z, X, iris_y)

Two Problems With Decision Trees
We see two problems with the output of the decision tree on the Iris dataset:

The decision boundary between the two classes is very non-smooth and blocky.
The decision tree overfits the data and the decision regions are highly fragmented.

High-Variance Decision Trees
When the trees have sufficiently high depth, they can quickly overfit the data.

Recall that this is called the high variance problem, because small perturbations of the data
lead to large changes in model predictions.

Consider the perofmrance of a decision tree classifier on 3 random subsets of the data.

In [64]: n_plots, n_flowers, n_samples = 3, iris_X.shape[0], 40
plt.figure(figsize=(14, 5))
for i in range(n_plots):
 ax = plt.subplot(1, n_plots, i + 1)
 random_idx = np.random.randint(0, n_flowers, size=(n_samples,))
 X_random, y_random = iris_X.iloc[random_idx, :2], iris_y[random_idx]

 clf = DecisionTreeClassifier()
 clf.fit(X_random, y_random)
 Z = make_2d_preds(clf, X_random)
 make_2d_plot(ax, Z, X_random, y_random)
 ax.set_title('Random sample %d' % i)

Random Forests
In order to reduce the variance of the basic decision tree, we apply bagging -- the variance
reduction technique that we have seen earlier.

We refer to bagged decision trees as Random Forests.

Instantiating our definition of bagging with decision trees, we obtain the following
pseudocode defintion of random forests:

for i in range(n_models):
 # collect data samples and fit models
 X_i, y_i = sample_with_replacement(X, y, n_samples)
 model = DecisionTree().fit(X_i, y_i)
 random_forest.append(model)

output average prediction at test time:
y_test = random_forest.average_prediction(y_test)

We may implement random forests in python as follows:

In [121]: np.random.seed(1000)
n_models, n_flowers, n_subset = 300, iris_X.shape[0], 10
random_forest = []
for i in range(n_models):
 # sample the data with replacement
 random_idx = np.random.randint(0, n_flowers, size=(n_subset,))
 X_random, y_random = iris_X.iloc[random_idx, :2], iris_y[random_idx]

 # train a decision tree model
 clf = DecisionTreeClassifier()
 clf.fit(X_random, y_random)

 # append it to our ensemble
 random_forest += [clf]

Random Forests on the Flower Dataset
Consider now what happens when we deploy random forests on the same dataset as
before.

Now, each prediction is the average on the set of bagged decision trees.

In [122]: # Visualize predictions from a random forest
ax = plt.gca()

compute average predictions from all the models in the ensemble
X_all, y_all = iris_X.iloc[:,:2], iris_y
Z_list = []
for clf in random_forest:
 Z_clf = make_2d_preds(clf, X_all)
 Z_list += [Z_clf]
Z_avg = np.stack(Z_list, axis=2).mean(axis=2)

visualize predictions
make_2d_plot(ax, np.rint(Z_avg), X_all, y_all)

The boundaries are much more smooth and well-behaved.

Algorithm: Random Forests
Type: Supervised learning (regression and classification).
Model family: Bagged decision trees.
Objective function: Squared error, mislcassification error, Gini index, etc.
Optimizer: Greedy addition of rules, followed by pruning.

Pros and Cons of Random Forests
Random forests remain a popular machine learning algorithm:

They require little data preparation (no rescaling, handle continuous and discrete
features, work well for classification and regression).
They are often quite accurate.

Their main disadvantages are that:

They are not interpretable.
They do not work with unstructured data (images, audio).

